
Economics Letters 119 (2013) 180–182
Contents lists available at SciVerse ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

An adaptive truncated product method for combining dependent p-values

Xuguang Sheng a,∗, Jingyun Yang b

a Department of Economics, American University, United States
b Methodology Center, Pennsylvania State University, United States

h i g h l i g h t s

• We propose an adaptive truncated product method (ATPM) to facilitate selecting truncation points.
• We develop a single-layer bootstrap procedure to estimate the distribution of the ATPM.
• The ATPM insures against selecting an inferior truncation point without sacrificing much power.
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a b s t r a c t

We propose an adaptive truncated product method that facilitates the selection of the truncation point
among a set of candidates. To efficiently estimate the distribution of the proposed method when the
p-values are correlated, we develop a single-layer bootstrap procedure.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In themultiple testing literature, Zaykin et al. (2002) developed
the TPM that combines only the p-values less than some pre-
specified threshold. As demonstrated by Neuhäuser and Bretz
(2005) and Sheng and Yang (forthcoming), the TPM provides
more power by removing large p-values. However, two major
issues remain in the empirical application of the TPM. First,
an appropriate truncation point must be specified a priori. This
arbitrary pre-specification poses the risk of choosing a value too
large or too small, which may detrimentally affect power of the
test. Second, the null distribution of the TPM is unknownwhen the
p-values are correlated. To tackle these two problems, we propose
an adaptive truncated product method (ATPM) that purposefully
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determines the truncation point based on the minimum p-value
observed at all candidate points. We develop a single-layer
bootstrap re-sampling procedure to efficiently estimate the
distribution of the ATPMby employing both original and generated
data sets as in Ge et al. (2003).

2. An adaptive truncated product method

Suppose that tests have been conducted for N individual
hypotheses H0i, i = 1, 2, . . . ,N . For each test, the p-value, pi,
is calculated. We consider the problem of testing the joint null
hypothesis H0 =

n
i=1 H0i at significance level α versus the

combined alternative hypothesisHA: at least one ofH0i is false. The
test statistic of the TPM is defined as

W =

N
i=1

pI(pi≤τ)i , (1)

where I(·) is the indicator function and τ is the truncation point.
To use the TPM, an appropriate truncation point must be specified
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a priori. The selection of a truncation point can be quite arbitrary
as shown by the various values used in the literature. For example,
τ = 0.05 is used in Zaykin et al. (2002), τ = 0.5 in Neuhäuser and
Bretz (2005) and τ = 0.7 in Neuhäuser (2003).

When the p-values are independent, W has a known distribu-
tion under the joint null hypothesis. However, this distribution no
longer holdswhen the p-values are correlated, which poses a prob-
lem to the empirical application of the TPM. Zaykin et al. (2002)
recommended a Monte Carlo algorithm to estimate the distribu-
tion. Unfortunately, this algorithm relies on an estimation of the
correlation matrix for the p-value vectors, which is sensitive to the
ordering of the tests.

We propose an ATPM that facilitates the selection of the
truncation point among a set of candidates. Suppose that there are
K candidate truncation points, τk, k = 1, . . . , K . Let W (k) be the
TPM calculated by combining those p-values that do not exceed τk
and let ŝ(k) be the estimated p-value forW (k). The ATPM is defined
as the minimum p-value observed at various candidate truncation
points:

M = min
1≤k≤K

ŝ(k). (2)

Many studies such as Dudbridge and Koeleman (2004) and Yu et al.
(2009) use the minimum p-value as a test statistic to improve the
test power.

We develop a bootstrap re-sampling procedure to efficiently
estimate the distribution for the ATPM. First, we calculate the
TPM based on the original data set for various truncation points
τk, denoted by Wk,0, 1 ≤ k ≤ K . Then we use a bootstrap
procedure to generate B data sets under the null hypothesis. The
types of bootstrap re-sampling depend on the data generating
process and the performed tests. Based on each of the B data
sets, we perform statistical tests for N individual hypotheses and
calculate the resulting TPM for each τk, denoted by Wk,b, 1 ≤ k ≤

K , 1 ≤ b ≤ B. The overall p-value for the ATPM can be obtained
from the original (b = 0) and generated (b ≥ 1) data sets in the
following way:

1. Obtain the estimated p-value ŝbk forWk,b:

ŝbk =

B
l=0

I(Wk,b ≥ Wk,l)

B + 1
, 1 ≤ k ≤ K , 0 ≤ b ≤ B.

2. CalculateMb, 0 ≤ b ≤ B, as

Mb = min
1≤k≤K

ŝbk.

3. The overall p-value forM , as defined in Eq. (2), can be estimated
by
B

b=0
I(M ≥ Mb)

B + 1
.

The proposed approach is based on the ‘‘Warp-Speed Method’’
of Giacomini et al. (forthcoming). The key idea underlying their
proposal is that taking just one bootstrap draw for each simulated
sample can suffice to provide a useful approximation to the
statistic of interest. We reject the joint null hypothesis H0 if the
overall p-value is smaller than the significance level α.

3. Monte Carlo evidence

In this section, we provide simulation evidence on the
performance of theATPM in testing panel cointegration. See Baltagi
(2008, chapter 12) for a recent review on nonstationary panels
and p-values. We used the following data generating process
(DGP):

yit − αi − βixit = zit ,

zit = ρizit−1 + ezit , xit = xit−1 + ewit ,

ezit = λift + ξit , ewit = φit + πφit−1,

where

ξit
φit
ft


∼ i.i.d. N


0
0
0


,

 1 ψσ 0
ψσ σ 2 0
0 0 1


.

In conducting the simulation, we choose αi ∼ U[0, 5], βi ∼

U[1, 2], σ = 1 and ψ = 0.5. We explore all combinations of
the following parameter values: π ∈ {−0.5, 0}, λi ∼ U[1, 4] or
U[0, 1],N ∈ {20, 40} and T ∈ {50, 100}.

When | ρi |< 1, the error term zit is stationary such that yit and
xit are cointegrated with cointegrating vector (1 αi βi). We select
a common ρ in the simulations to facilitate the interpretation of
the results. We examine the size of tests with ρ = 1, and the
power of tests with ρ = 0.5 for i = 1, . . . ,N0 and ρ = 1 for i =

N0 + 1, . . . ,N , where N0 = [δ ∗ N]. By varying δ ∈ {0.1, 0.5, 0.9},
we explore the impact of cointegrated relationships in the panel
on the power of tests.

The panel is cross-sectionally correlated due to the common
factor ft and the factor loading λi, with λi ∼ U[1, 4] for high
cross-section correlation and λi ∼ U[0, 1] for low correlation. To
control for cross-section correlation, we follow the sieve bootstrap
procedure advocated by Chang et al. (2006) and Hanck (2009).
See the Online Appendix for the implementation details. We use
the augmented Dickey–Fuller cointegration test with the number
of lags selected in accordance with Ng and Perron (2001). The
p-values are obtained using the response surfaces in MacKinnon
(1996).We calculate the TPM (denoted byW ∗) and the ATPMusing
data generated from the bootstrap procedure. To limit the effect of
multiple comparisons, we use K = 8 candidate truncation points
(τ = 0.05, 0.1, 0.2, . . . , 0.7).1 Due to space limitation, we focus
on the results for τ = 0.1, 0.3, 0.5 and 0.7.

Table 1 displays the size of tests. There is no clear pattern for the
bootstrap TPM with different truncation points. Despite slightly
downward size distortions for T = 50 due to weak cross-section
correlation, both the ATPM and the bootstrap TPM control the size
reasonably well.

As for the power of tests, no truncation point uniformly
dominates the others. For example, the TPM with τ = 0.3 may
perform quite well in some cases, but has a low power relative to
other truncation points in other cases. In Fig. 1, we plot the power
of the ATPM against the maximum and minimum power of the
TPM obtained at various truncation points. Although it may not
always be the most powerful, the ATPM tracks the best truncation
point very closely. The Monte Carlo simulations illustrate the
strength of the ATPM relative to more risky, arbitrary selection
approaches. In conclusion, the ATPM insures against selecting
an inferior individual truncation point without sacrificing much
power.
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Fig. 1. Power comparison of the TPM and ATPM. The highest and lowest points of the vertical bars represent the maximum and minimum power of the TPM obtained at
various truncation points. The vertical bars are ordered by the minimum power of the TPM. The dots represent the power of the ATPM. (a) tests with negative MA errors. (b)
tests without MA errors.
Table 1
Size of panel cointegration test.

N T W ∗

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 ATPM

(a) Negative MA error

(i)

20 50 0.008 0.012 0.011 0.010 0.009
20 100 0.035 0.046 0.049 0.046 0.041
40 50 0.009 0.015 0.015 0.015 0.013
40 100 0.036 0.047 0.052 0.053 0.044

(ii)

20 50 0.030 0.050 0.054 0.052 0.045
20 100 0.053 0.078 0.083 0.077 0.071
40 50 0.045 0.070 0.072 0.070 0.062
40 100 0.072 0.096 0.102 0.100 0.091

(b) No MA error

(i)

20 50 0.016 0.017 0.019 0.019 0.013
20 100 0.032 0.038 0.039 0.037 0.034
40 50 0.014 0.020 0.019 0.019 0.018
40 100 0.036 0.046 0.047 0.046 0.043

(ii)

20 50 0.032 0.042 0.044 0.043 0.039
20 100 0.042 0.051 0.051 0.051 0.048
40 50 0.031 0.043 0.041 0.039 0.039
40 100 0.047 0.067 0.067 0.066 0.059

Note: Rejection rates at a nominal level α = 0.05, using δ = 0 and 5000
replications. Panels (i) and (ii) correspond to ‘‘weak’’ and ‘‘strong’’ cross-section
correlations. Panels (a) and (b) correspond to negative MA error and no MA error.
W ∗ is the bootstrap TPM.
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Appendix. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.econlet.2013.02.013.
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